Content Based Image Retrieval Scheme using Color, Texture and Shape Features
نویسندگان
چکیده
A novel approach of Content Based Image Retrieval(CBIR), which combines color, texture and shape descriptors to represent the features of the image, is discussed in this paper. The proposed scheme is based on three noticeable algorithms: color distribution entropy(CDE), color level co-occurrence(CLCM) and invariant moments. CDE takes the correlation of the color spatial distribution in an image into consideration. CLCM matrix is the texture feature of the image, which is a new proposed descriptor that is grounded on co-occurrence matrix to seize the alteration of the texture. Hu invariant moments are frequently used owing to its invariance under translation, changes in scale, and also rotation. The proposed scheme achieves a modest retrieval result by utilizing these diverse and primitive image descriptors, at the same time, the retrieval result is better when use the texture feature alone which we proposed than use gray level co-occurrence. The similarity measure matrix is based upon Euclidean distance.
منابع مشابه
Image retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملContent Based Image Retrieval based on Color, Texture and Shape features using Image and its complement
Color, texture and shape information have been the primitive image descriptors in content based image retrieval systems. This paper presents a novel framework for combining all the three i.e. color, texture and shape information, and achieve higher retrieval efficiency using image and its complement. The image and its complement are partitioned into non-overlapping tiles of equal size. The feat...
متن کاملImage Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix
In this article, a fabulous method for database retrieval is proposed. The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...
متن کاملContent-based Image Retrieval for Asset Management Based on Weighted Feature and K-means Clustering
Assets have different shapes, colors and textures. A shape feature is the main characteristic, which distinguishes each type of asset in addition to the other features, i.e. the color and the texture. The value of features in the image-based asset information retrieval is used as the key field by comparing the similarities between the images. These similarities can be determined based on the di...
متن کاملContent Based Image Retrieval using Combined Features of Color and Texture Features with SVM Classification
Retrieval of an image is a more effective and efficient for managing extensive image database. Content Based Image Retrieval (CBIR) is a one of the image retrieval technique which uses user visual features of an image such as color, shape, and texture features etc. It permits the end user to give a query image in order to retrieve the stored images in database according to their similarity to t...
متن کامل